Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Exp Comput Multiph Flow ; 5(3): 290-303, 2023.
Article in English | MEDLINE | ID: covidwho-2257033

ABSTRACT

Many dental procedures are aerosol-generating and pose a risk for the spread of airborne diseases, including COVID-19. Several aerosol mitigation strategies are available to reduce aerosol dispersion in dental clinics, such as increasing room ventilation and using extra-oral suction devices and high-efficiency particulate air (HEPA) filtration units. However, many questions remain unanswered, including what the optimal device flow rate is and how long after a patient exits the room it is safe to start treatment of the next patient. This study used computational fluid dynamics (CFD) to quantify the effectiveness of room ventilation, an HEPA filtration unit, and two extra-oral suction devices to reduce aerosols in a dental clinic. Aerosol concentration was quantified as the particulate matter under 10 µm (PM10) using the particle size distribution generated during dental drilling. The simulations considered a 15 min procedure followed by a 30 min resting period. The efficiency of aerosol mitigation strategies was quantified by the scrubbing time, defined as the amount of time required to remove 95% of the aerosol released during the dental procedure. When no aerosol mitigation strategy was applied, PM10 reached 30 µg/m3 after 15 min of dental drilling, and then declined gradually to 0.2 µg/m3 at the end of the resting period. The scrubbing time decreased from 20 to 5 min when the room ventilation increased from 6.3 to 18 air changes per hour (ACH), and decreased from 10 to 1 min when the flow rate of the HEPA filtration unit increased from 8 to 20 ACH. The CFD simulations also predicted that the extra-oral suction devices would capture 100% of the particles emanating from the patient's mouth for device flow rates above 400 L/min. In summary, this study demonstrates that aerosol mitigation strategies can effectively reduce aerosol concentrations in dental clinics, which is expected to reduce the risk of spreading COVID-19 and other airborne diseases.

2.
Clin Oral Investig ; 27(5): 1937-1944, 2023 May.
Article in English | MEDLINE | ID: covidwho-2170367

ABSTRACT

OBJECTIVES: Aerosols formed during dental treatments have a huge risk for the spread of bacteria and viruses. This study is aimed at determining which part of the working area and at what size aerosol is formed and ensuring more effective use of HEPA-filtered devices. MATERIALS AND METHODS: Anterior tooth preparation was performed by one dentist with one patient. Particle measurements were made using an airborne particle counter and were taken at four different locations: the chest of the patient, the chest of the dentist, the center of the room, and near the window. Three groups were determined for this study: group 1: measurement in a 24-h ventilated room (before the tooth preparation, empty room), group 2: measurement with the use of saliva ejector (SE), and group 3: measurement with the use of saliva ejector and HEPA-filtered extra-oral suction (HEOS) unit. RESULTS: The particles generated during tooth preparation were separated according to their sizes; the concentration in different locations of the room and the efficiency of the HEOS unit were examined. CONCLUSIONS: The present study showed that as the particle size increases, the rate of spread away from the dentist's working area decreases. The HEPA-filtered extra-oral suction unit is more effective on particles smaller than 0.5 microns. Therefore, infection control methods should be arranged according to these results. CLINICAL RELEVANCE: The effective and accurate use of HEPA-filtered devices in clinics significantly reduces the spread of bacterial and viral infections and cross-infection.


Subject(s)
Cross Infection , Humans , Pilot Projects , Suction , Aerosols , Particle Size
3.
14th International Conference on Information Technology and Electrical Engineering, ICITEE 2022 ; : 253-258, 2022.
Article in English | Scopus | ID: covidwho-2191881

ABSTRACT

The spread of Covid-19 virus occurs quickly, one of which is through sneezing and coughing (drops or saliva). This becomes an infectious material for dentists in carrying out dental care during the pandemic. Extra-oral suction (EOS) is a device for sucking the patient's Aerosol when performing surgery or dental treatment, but the nozzle of the suction device is still manually moved, therefore the position of the EOS nozzle is right above the patient's mouth. This allows for some aerosol particles that have not been inhaled by the device when the patient turns or changes his head position. In this paper, Visual Servoing (VS) is needed, which is an approach to guide a robot using visual information. Image processing (face and mouth detection), and controls are combined to be able to move or change the position of the nozzle automatically according to the position and direction of the patient's mouth. The human face and mouth openness pose detection can be done using the Haar-cascade method and the Adaptive Boosting (AdaBoost) algorithm. This system is expected to optimize performance in dentist operations and minimize the transmission of the Covid-19 virus. © 2022 IEEE.

4.
Viruses ; 13(10)2021 09 25.
Article in English | MEDLINE | ID: covidwho-1448934

ABSTRACT

Oral health care workers (OHCW) are exposed to pathogenic microorganisms during dental aerosol-generating procedures. Technologies aimed at the reduction of aerosol, droplets and splatter are essential. This in vivo study assessed aerosol, droplet and splatter contamination in a simulated clinical scenario. The coolant of the high-speed air turbine was colored with red concentrate. The red aerosol, droplets and splatter contamination on the wrists of the OHCW and chests of the OHCW/volunteer protective gowns, were assessed and quantified in cm2. The efficacy of various evacuation strategies was assessed: low-volume saliva ejector (LV) alone, high-volume evacuator (HV) plus LV and an extra-oral dental aerosol suction device (DASD) plus LV. The Kruskal-Wallis rank-sum test for multiple independent samples with a post-hoc test was used. No significant difference between the LV alone compared to the HV plus LV was demonstrated (p = 0.372059). The DASD combined with LV resulted in a 62% reduction of contamination of the OHCW. The HV plus LV reduced contamination by 53% compared to LV alone (p = 0.019945). The DASD demonstrated a 50% reduction in the contamination of the OHCWs wrists and a 30% reduction in chest contamination compared to HV plus LV. The DASD in conjunction with LV was more effective in reducing aerosol, droplets and splatter than HV plus LV.


Subject(s)
Aerosols/analysis , Dentistry/methods , Disease Transmission, Infectious/prevention & control , Dental Equipment/adverse effects , Dental Equipment/microbiology , Humans , Suction
5.
Sensors (Basel) ; 21(11)2021 Jun 07.
Article in English | MEDLINE | ID: covidwho-1266762

ABSTRACT

Human exposure to infectious aerosols results in the transmission of diseases such as influenza, tuberculosis, and COVID-19. Most dental procedures generate a significant number of aerosolized particles, increasing transmission risk in dental settings. Since the generation of aerosols in dentistry is unavoidable, many clinics have started using intervention strategies such as area-filtration units and extraoral evacuation equipment, especially under the relatively recent constraints of the pandemic. However, the effectiveness of these devices in dental operatories has not been studied. Therefore, the ability of dental personnel to efficiently position and operate such instruments is also limited. To address these challenges, we utilized a real-time sensor network for assessment of aerosol dynamics during dental restoration and cleaning producers with and without intervention. The strategies tested during the procedures were (i) local area High-Efficiency Particle Air (HEPA) filters and (ii) Extra-Oral Suction Device (EOSD). The study was conducted at the University of Washington School of Dentistry using a network of 13 fixed sensors positioned within the operatory and one wearable sensor worn by the dental operator. The sensor network provides time and space-resolved particulate matter (PM) data. Three-dimensional (3D) visualization informed aerosol persistence in the operatory. It was found that area filters did not improve the overall aerosol concentration in dental offices in a significant way. A decrease in PM concentration by an average of 16% was observed when EOSD equipment was used during the procedures. The combination of real-time sensors and 3D visualization can provide dental personnel and facility managers with actionable feedback to effectively assess aerosol transmission in medical settings and develop evidence-based intervention strategies.


Subject(s)
COVID-19 , Aerosols , Humans , Pandemics , Particulate Matter , SARS-CoV-2
6.
BMC Oral Health ; 21(1): 52, 2021 02 05.
Article in English | MEDLINE | ID: covidwho-1067221

ABSTRACT

BACKGROUND: Transmission of COVID-19 via salivary aerosol particles generated when using handpieces or ultrasonic scalers is a major concern during the COVID-19 pandemic. The aim of this study was to assess the spread of dental aerosols on patients and dental providers during aerosol-generating dental procedures. METHODS: This pilot study was conducted with one volunteer. A dental unit used at the dental school for general dental care was the site of the experiment. Before the study, three measurement meters (DustTrak 8534, PTrak 8525 and AeroTrak 9306) were used to measure the ambient distribution of particles in the ambient air surrounding the dental chair. The volunteer wore a bouffant, goggles, and shoe covers and was seated in the dental chair in supine position, and covered with a surgical drape. The dentist and dental assistant donned bouffant, goggles, face shields, N95 masks, surgical gowns and shoe covers. The simulation was conducted by using a high-speed handpiece with a diamond bur operating in the oral cavity for 6 min without touching the teeth. A new set of measurement was obtained while using an ultrasonic scaler to clean all teeth of the volunteer. For both aerosol generating procedures, the aerosol particles were measured with the use of saliva ejector (SE) and high-speed suction (HSS) followed a separate set of measurement with the additional use of an extra oral high-volume suction (HVS) unit that was placed close to the mouth to capture the aerosol in addition to SE and HSS. The distribution of the air particles, including the size and concentration of aerosols, was measured around the patient, dentist, dental assistant, 3 feet above the patient, and the floor. RESULTS: Four locations were identified with elevated aerosol levels compared to the baseline, including the chest of the dentist, the chest of patient, the chest of assistant and 3 feet above the patient. The use of additional extra oral high volume suction reduced aerosol to or below the baseline level. CONCLUSIONS: The increase of the level of aerosol with size less than 10 µm was minimal during dental procedures when using SE and HSS. Use of HVS further reduced aerosol levels below the ambient levels.


Subject(s)
COVID-19 , Pandemics , Aerosols , Humans , Pilot Projects , SARS-CoV-2 , Saliva , Schools, Dental
SELECTION OF CITATIONS
SEARCH DETAIL